The Master Constraint

نویسنده

  • Thomas Thiemann
چکیده

Recently the Master Constraint Programme (MCP) for Loop Quantum Gravity (LQG) was launched which replaces the infinite number of Hamiltonian constraints by a single Master constraint. The MCP is designed to overcome the complications associated with the non – Lie – algebra structure of the Dirac algebra of Hamiltonian constraints and was successfully tested in various field theory models. For the case of 3+1 gravity itself, so far only a positive quadratic form for the Master Constraint Operator was derived. In this paper we close this gap and prove that the quadratic form is closable and thus stems from a unique self – adjoint Master Constraint Operator. The proof rests on a simple feature of the general pattern according to which Hamiltonian constraints in LQG are constructed and thus extends to arbitrary matter coupling and holds for any metric signature. With this result the existence of a physical Hilbert space for LQG is established by standard spectral analysis. [email protected] [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Master Constraint Operator in Loop Quantum Gravity

We introduce a Master Constraint Operator M̂ densely defined in the diffeomorphism invariant Hilbert space in loop quantum gravity. The corresponding quadratic form coincides with the one proposed by Thiemann in the master constraint programme. It is shown that M̂ is positive and symmetric, and hence has its Friedrichs self-adjoint extension. So the master constraint programme for loop quantum gr...

متن کامل

Testing the Master Constraint Programme for Loop Quantum Gravity I. General Framework

Recently the Master Constraint Programme for Loop Quantum Gravity (LQG) was proposed as a classically equivalent way to impose the infinite number of Wheeler – DeWitt constraint equations in terms of a single Master Equation. While the proposal has some promising abstract features, it was until now barely tested in known models. In this series of five papers we fill this gap, thereby adding con...

متن کامل

Testing the Master Constraint Programme for Loop Quantum Gravity IV. Free Field Theories

This is the fourth paper in our series of five in which we test the Master Constraint Programme for solving the Hamiltonian constraint in Loop Quantum Gravity. We now move on to free field theories with constraints, namely Maxwell theory and linearized gravity. Since the Master constraint involves squares of constraint operator valued distributions, one has to be very careful in doing that and ...

متن کامل

Scheduling security constraint unit commitment for power system including stochastic wind power generation

This paper introduces a new approach for scheduling security constraint unit commitment (SCUC) including wind farms. Because of uncertainty in wind power production, we tried to develop a new method for incorporating wind power generation in power plant scheduling. For this, wind power generation modeled with unit commitment in a non-linear optimization problem and simulated by submitting diffe...

متن کامل

Testing the Master Constraint Programme for Loop Quantum Gravity V. Interacting Field Theories

This is the final fifth paper in our series of five in which we test the Master Constraint Programme for solving the Hamiltonian constraint in Loop Quantum Gravity. Here we consider interacting quantum field theories, specifically we consider the non – Abelean Gauss constraints of Einstein – Yang – Mills theory and 2+1 gravity. Interestingly, while Yang – Mills theory in 4D is not yet rigorousl...

متن کامل

Master Constraint Operators in Loop Quantum Gravity

We introduce a master constraint operator M̂ densely defined in the diffeomorphism invariant Hilbert space in loop quantum gravity, which corresponds classically to the master constraint in the programme. It is shown that M̂ is positive and symmetric, and hence has its Friedrichs self-adjoint extension. The same conclusion is tenable for an alternative master operator M̂′, whose quadratic form coi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005